0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 3 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 110 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 83 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 469 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 202 ms)
↳24 CpxRNTS
↳25 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳26 CpxRNTS
↳27 IntTrsBoundProof (UPPER BOUND(ID), 656 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 513 ms)
↳30 CpxRNTS
↳31 FinalProof (⇔, 0 ms)
↳32 BOUNDS(1, n^2)
cond(true, x, y) → cond(gr(x, y), p(x), s(y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond(true, x, y) → cond(gr(x, y), p(x), s(y)) [1]
gr(0, x) → false [1]
gr(s(x), 0) → true [1]
gr(s(x), s(y)) → gr(x, y) [1]
p(0) → 0 [1]
p(s(x)) → x [1]
cond(true, x, y) → cond(gr(x, y), p(x), s(y)) [1]
gr(0, x) → false [1]
gr(s(x), 0) → true [1]
gr(s(x), s(y)) → gr(x, y) [1]
p(0) → 0 [1]
p(s(x)) → x [1]
cond :: true:false → s:0 → s:0 → cond true :: true:false gr :: s:0 → s:0 → true:false p :: s:0 → s:0 s :: s:0 → s:0 0 :: s:0 false :: true:false |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
cond
gr
p
const
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
true => 1
0 => 0
false => 0
const => 0
cond(z, z', z'') -{ 3 }→ cond(gr(x'', y'), x'', 1 + (1 + y')) :|: z' = 1 + x'', z = 1, y' >= 0, x'' >= 0, z'' = 1 + y'
cond(z, z', z'') -{ 3 }→ cond(1, x', 1 + 0) :|: z'' = 0, z' = 1 + x', z = 1, x' >= 0
cond(z, z', z'') -{ 3 }→ cond(0, 0, 1 + y) :|: z'' = y, z = 1, y >= 0, z' = 0
gr(z, z') -{ 1 }→ gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x
gr(z, z') -{ 1 }→ 1 :|: x >= 0, z = 1 + x, z' = 0
gr(z, z') -{ 1 }→ 0 :|: z' = x, x >= 0, z = 0
p(z) -{ 1 }→ x :|: x >= 0, z = 1 + x
p(z) -{ 1 }→ 0 :|: z = 0
cond(z, z', z'') -{ 3 }→ cond(gr(z' - 1, z'' - 1), z' - 1, 1 + (1 + (z'' - 1))) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(1, z' - 1, 1 + 0) :|: z'' = 0, z = 1, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(0, 0, 1 + z'') :|: z = 1, z'' >= 0, z' = 0
gr(z, z') -{ 1 }→ gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
gr(z, z') -{ 1 }→ 1 :|: z - 1 >= 0, z' = 0
gr(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
{ p } { gr } { cond } |
cond(z, z', z'') -{ 3 }→ cond(gr(z' - 1, z'' - 1), z' - 1, 1 + (1 + (z'' - 1))) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(1, z' - 1, 1 + 0) :|: z'' = 0, z = 1, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(0, 0, 1 + z'') :|: z = 1, z'' >= 0, z' = 0
gr(z, z') -{ 1 }→ gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
gr(z, z') -{ 1 }→ 1 :|: z - 1 >= 0, z' = 0
gr(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(gr(z' - 1, z'' - 1), z' - 1, 1 + (1 + (z'' - 1))) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(1, z' - 1, 1 + 0) :|: z'' = 0, z = 1, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(0, 0, 1 + z'') :|: z = 1, z'' >= 0, z' = 0
gr(z, z') -{ 1 }→ gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
gr(z, z') -{ 1 }→ 1 :|: z - 1 >= 0, z' = 0
gr(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
p: runtime: ?, size: O(n1) [z] |
cond(z, z', z'') -{ 3 }→ cond(gr(z' - 1, z'' - 1), z' - 1, 1 + (1 + (z'' - 1))) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(1, z' - 1, 1 + 0) :|: z'' = 0, z = 1, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(0, 0, 1 + z'') :|: z = 1, z'' >= 0, z' = 0
gr(z, z') -{ 1 }→ gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
gr(z, z') -{ 1 }→ 1 :|: z - 1 >= 0, z' = 0
gr(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
p: runtime: O(1) [1], size: O(n1) [z] |
cond(z, z', z'') -{ 3 }→ cond(gr(z' - 1, z'' - 1), z' - 1, 1 + (1 + (z'' - 1))) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(1, z' - 1, 1 + 0) :|: z'' = 0, z = 1, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(0, 0, 1 + z'') :|: z = 1, z'' >= 0, z' = 0
gr(z, z') -{ 1 }→ gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
gr(z, z') -{ 1 }→ 1 :|: z - 1 >= 0, z' = 0
gr(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
p: runtime: O(1) [1], size: O(n1) [z] |
cond(z, z', z'') -{ 3 }→ cond(gr(z' - 1, z'' - 1), z' - 1, 1 + (1 + (z'' - 1))) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(1, z' - 1, 1 + 0) :|: z'' = 0, z = 1, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(0, 0, 1 + z'') :|: z = 1, z'' >= 0, z' = 0
gr(z, z') -{ 1 }→ gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
gr(z, z') -{ 1 }→ 1 :|: z - 1 >= 0, z' = 0
gr(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
p: runtime: O(1) [1], size: O(n1) [z] gr: runtime: ?, size: O(1) [1] |
cond(z, z', z'') -{ 3 }→ cond(gr(z' - 1, z'' - 1), z' - 1, 1 + (1 + (z'' - 1))) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(1, z' - 1, 1 + 0) :|: z'' = 0, z = 1, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(0, 0, 1 + z'') :|: z = 1, z'' >= 0, z' = 0
gr(z, z') -{ 1 }→ gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
gr(z, z') -{ 1 }→ 1 :|: z - 1 >= 0, z' = 0
gr(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
p: runtime: O(1) [1], size: O(n1) [z] gr: runtime: O(n1) [1 + z'], size: O(1) [1] |
cond(z, z', z'') -{ 3 + z'' }→ cond(s, z' - 1, 1 + (1 + (z'' - 1))) :|: s >= 0, s <= 1, z = 1, z'' - 1 >= 0, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(1, z' - 1, 1 + 0) :|: z'' = 0, z = 1, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(0, 0, 1 + z'') :|: z = 1, z'' >= 0, z' = 0
gr(z, z') -{ 1 + z' }→ s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
gr(z, z') -{ 1 }→ 1 :|: z - 1 >= 0, z' = 0
gr(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
p: runtime: O(1) [1], size: O(n1) [z] gr: runtime: O(n1) [1 + z'], size: O(1) [1] |
cond(z, z', z'') -{ 3 + z'' }→ cond(s, z' - 1, 1 + (1 + (z'' - 1))) :|: s >= 0, s <= 1, z = 1, z'' - 1 >= 0, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(1, z' - 1, 1 + 0) :|: z'' = 0, z = 1, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(0, 0, 1 + z'') :|: z = 1, z'' >= 0, z' = 0
gr(z, z') -{ 1 + z' }→ s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
gr(z, z') -{ 1 }→ 1 :|: z - 1 >= 0, z' = 0
gr(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
p: runtime: O(1) [1], size: O(n1) [z] gr: runtime: O(n1) [1 + z'], size: O(1) [1] cond: runtime: ?, size: O(1) [0] |
cond(z, z', z'') -{ 3 + z'' }→ cond(s, z' - 1, 1 + (1 + (z'' - 1))) :|: s >= 0, s <= 1, z = 1, z'' - 1 >= 0, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(1, z' - 1, 1 + 0) :|: z'' = 0, z = 1, z' - 1 >= 0
cond(z, z', z'') -{ 3 }→ cond(0, 0, 1 + z'') :|: z = 1, z'' >= 0, z' = 0
gr(z, z') -{ 1 + z' }→ s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
gr(z, z') -{ 1 }→ 1 :|: z - 1 >= 0, z' = 0
gr(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
p: runtime: O(1) [1], size: O(n1) [z] gr: runtime: O(n1) [1 + z'], size: O(1) [1] cond: runtime: O(n2) [8 + 3·z' + z'·z'' + z'2], size: O(1) [0] |